
Boosted Lasso

Peng Zhao

University of California, Berkeley, USA.

Bin Yu

University of California, Berkeley, USA.

Summary.
In this paper, we propose the Boosted Lasso (BLasso) algorithm that is able to produce an ap-
proximation to the complete regularization path for general Lasso problems. BLasso is derived
as a coordinate descent method with a fixed small step size applied to the general Lasso loss
function (L1 penalized convex loss). It consists of both a forward step and a backward step
and uses differences of functions instead of gradient. The forward step is similar to Boosting
and Forward Stagewise Fitting, but the backward step is new and crucial for BLasso to approx-
imate the Lasso path in all situations. For cases with finite number of base learners, when the
step size goes to zero, the BLasso path is shown to converge to the Lasso path. For nonpara-
metric learning problems with a large or an infinite number of base learners, BLasso remains
valid since its forward steps are Boosting steps and its backward steps only involve the base
learners that are included in the model from previous iterations. Experimental results are also
provided to demonstrate the difference between BLasso and Boosting or Forward Stagewise
Fitting. In addition, we extend BLasso to the case of a general convex loss penalized by a
general convex function and illustrate this extended BLasso with examples.

Keywords: Coordinate Descent; Backward; Boosting; Lasso; Regularization Path.

1. Introduction

Lasso (Tibshirani, 1996) is an important idea recently originated in statistics. It regularizes
or shrinks a fitted model through an L1 penalty or constraint. Its popularity can be ex-
plained in several ways. Since nonparametric models that fit training data well often have
low biases but large variances, prediction accuracies can sometimes be improved by shrink-
ing a model or making it more sparse. The regularization resulting from the L1 penalty
leads to sparse solutions, that is, there are few basis functions with nonzero weights (among
all possible choices). This statement is proved asymptotically by Knight and Fu (2000) and
for the finite case by Donoho (2004) in the specialized setting of over-complete libraries
and large under-determined systems of linear equations. Furthermore, the sparse models
induced by Lasso are more interpretable and often preferred in sciences and social sciences.

Another vastly popular and recent idea is Boosting. Since its inception in 1990 (Schapire,
1990; Freund, 1995; Freund and Schapire, 1996), it has become one of the most successful
machine learning methods and is now understood as an iterative method leading to an
additive model (Breiman, 1998, Mason et al., 1999 and Friedman et al., 2001).

While it is a natural idea to combine boosting and Lasso to have a regularized Boosting
procedure, it is also intriguing that Boosting, without any additional regularization, has
its own resistance to overfitting. For specific cases such as L2Boost (Friedman, 2001),
this resistance is understood to some extent (Buhlmann and Yu, 2001). However, it was
not until later when Forward Stagewise Fitting (FSF) was introduced as a boosting based

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
Boosted Lasso

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California,Department of
Statistics,Berkeley,CA,94720-3860

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

21

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 Peng Zhao et al.

procedure with much more cautious steps that a similarity between FSF and Lasso was
observed (Hastie et al., 2001, Efron et al., 2004).

This link between Lasso and FSF is formally described for the linear regression case
through LARS (Least Angle Regression, Efron et al. 2004). It is also known that for spe-
cial cases (such as orthogonal designs) FSF can approximate Lasso path infinitely close, but
in general, it is unclear what regularization criteria FSF optimizes. As can be seen in our
experiments (Figure 1), FSF solutions can be significantly different from the Lasso solutions
in the case of strongly correlated predictors which are common in high-dimensional data
problems. However, it is still used as an approximation to Lasso because it is often com-
putationally prohibitive to solve Lasso with general loss functions for many regularization
parameters through Quadratic Programming.

In this paper, we propose a new algorithm Boosted Lasso (BLasso). It approximates
the Lasso path in all situations. The motivation comes from a critical observation that both
FSF and Boosting only work in a forward fashion (so is FSF named). They always take
steps that reduce empirical loss the most regardless of the impact on model complexity (or
the L1 penalty in the Lasso case). This often proves to be too greedy – the algorithms are
not able to correct mistakes made in early stages. Taking a coordinate descent view point of
the Lasso minimization with a fixed step size, we introduce an innovative “backward” step.
This step utilizes the same minimization rule as the forward step to define each fitting stage
with an additional rule to force the model complexity to decrease. By combining backward
and forward steps, Boosted Lasso is able to go back and forth and approximates the Lasso
path correctly.

BLasso can be seen as a marriage between two families of successful methods. Com-
putationally, BLasso works similarly to Boosting and FSF. It isolates the sub-optimization
problem at each step from the whole process, i.e. in the language of the Boosting litera-
ture, each base learner is learned separately. This way BLasso can deal with different loss
functions and large classes of base learners like trees, wavelets and splines by fitting a base
learner at each step and aggregating the base learners as the algorithm progresses. But un-
like FSF which has implicit local regularization in the sense that at any iteration, FSF with
a fixed small step size only searches over those models which are one small step away from
the current one in all possible directions corresponding to the base learners, BLasso can be
proven to converge to the Lasso solutions which have explicit global L1 regularization for
cases with a finite number of base learners. And the algorithm uses only the differences of
the loss function and basic operations without taking any first or second order derivative
or matrix inversion. The fact that BLasso can be generalized to give regularized path for
other convex penalties also comes as a pleasant surprise which further shows a connection
between statistical estimation methods and the Barrier Method (Fiacco and McCormick,
1968, and cf. Boyd and Vandenberghe 2004) in the constrained convex optimization lit-
erature. For the original Lasso problem, i.e. the least squares problem with L1 penalty,
algorithms that give the entire Lasso path have been established (Shooting algorithm by Fu
1998 and LARS by Efron et al. 2004). These algorithms are not suitable for nonparametric
learning where the number of base learners can be very large or infinite. BLasso remains
valid since it treats each fitting step as a sub-optimization problem. Even for cases where
the number of base learners is small, BLasso is still an attractive alternative to existing
algorithms because of its simple and intuitive nature and the fact that it can be stopped
early to find an solution from the regularization path.

The rest of the paper is organized as follows. A brief review of Boosting and FSF is
provided in Section 2.1 and Lasso in Section 2.2. Section 3 introduces BLasso. Section 4

Boosted Lasso 3

discusses the backward step and gives the intuition behind BLasso and explains why FSF is
unable to give the Lasso path. Section 5 contains a more detailed discussion on solving L1

penalized least squares problem using BLasso. Section 6 discusses BLasso for nonparametric
learning problems. Section 7 introduces a Generalized BLasso algorithm which deals with
general convex penalties. In Section 8, results of experiments with both simulated and
real data are reported to demonstrate the attractiveness of BLasso and differences between
BLasso and FSF. Finally, Section 9 contains a discussion on the choice of step sizes, a
summary of the paper, and future research directions.

2. Boosting, Forward Stagewise Fitting and the Lasso

Boosting is an iterative fitting procedure that builds up a model stage by stage. FSF can
be viewed as Boosting with a fixed small step size at each stage and it produces solutions
that are often close to the Lasso solutions (path). This section gives a brief review of the
FSF and Boosting algorithms followed by a review of Lasso.

2.1. Boosting and Forward Stagewise Fitting
The boosting algorithms can be seen as functional gradient descent techniques (Friedman
et al. 2000, Mason et al. 1999). The task is to estimate the function F : Rd → R that
minimizes an expected loss

E[C(Y, F (X))], C(·, ·) : R × R → R+ (1)

based on data Zi = (Yi, Xi)(i = 1, ..., n). The univariate Y can be continuous (regression
problem) or discrete (classification problem). The most prominent examples for the loss
function C(·, ·) include Classification Margin, Logit Loss and L2 Loss functions.

The family of F (·) being considered is the set of ensembles of “base learners”

D = {F : F (x) =
∑

j

βjhj(x), x ∈ Rd, βj ∈ R}, (2)

where the family of base learners can be very large or contain infinite members, e.g. trees,
wavelets and splines.

Let β = (β1, ...βj , ...)T , we can reparametrize the problem using

L(Z, β) := C(Y, F (X)), (3)

where the specification of F is hidden by L to make our notation simpler.
To find an estimate for β, we set up an empirical minimization problem:

β̂ = argmin
β

n∑

i=1

L(Zi; β). (4)

Despite the fact that the empirical loss function is often convex in β, exact minimization
is usually a formidable task for a moderately rich function family of base learners and with
such function families the exact minimization leads to overfitted models. Boosting is a
progressive procedure that iteratively builds up the solution (and it is often stopped early
to avoid overfitting):

4 Peng Zhao et al.

(ĵ, ĝ) = argmin
j,g

n∑

i=1

L(Zi; β̂t + g1j) (5)

β̂t+1 = β̂t + ĝ1ĵ (6)

where 1j is the jth standard basis, i.e. the vector with all 0s except for a 1 in the jth
coordinate and g ∈ R is a step size parameter. However, because the family of base learners
is usually large, finding j is still difficult, for which approximate solutions are found. A
typical strategy that Boosting implements is by applying functional gradient descent. This
gradient descent view has been recognized and refined by various authors including Breiman
(1998), Mason et al. (1999), Friedman et al. (2000), Friedman (2001), and Buhlmann and
Yu (2001). The well-known AdaBoost, LogitBoost and L2Boosting can all be viewed as
implementations of this strategy for different loss functions.

Forward Stagewise Fitting (FSF) is a similar method for approximating the minimization
problem described by (5) with some additional regularization. Instead of optimizing the
step size as in (6), FSF updates β̂t by a small fixed step size ε as in Friedman (2001):

β̂t+1 = β̂t + ε · sign(g)1ĵ

When FSF was introduced (Hastie et al. 2001, Efron et al. 2002), it was only described
for the L2 regression setting. For general loss functions, it can be defined by removing the
minimization over g in (5):

(ĵ, ŝ) = arg min
j,s=±ε

n∑

i=1

L(Zi; β̂t + s1j), (7)

β̂t+1 = β̂t + ŝ1ĵ , (8)

This description looks different from the FSF described in Efron et al.(2002), but the
underlying mechanic of the algorithm remains unchanged (see Section 5). Initially all coef-
ficients are zero. At each successive step, a predictor or coordinate is selected that reduces
most the empirical loss. Its corresponding coefficient βĵ is then incremented or decremented
by a small amount, while all other coefficients βj , j �= ĵ are left unchanged.

By taking small steps, FSF imposes some implicit regularization. After T < ∞ itera-
tions, many of the coefficients will be zero, namely those that have yet to be incremented.
The others will tend to have absolute values smaller than the unregularized solutions. This
shrinkage/sparsity property is reflected in the similarity between the solutions given by FSF
and Lasso which is reviewed next.

2.2. Lasso
Let T (β) denote the L1 penalty of β = (β1, ..., βj , ...)T , that is, T (β) = ‖β‖1 =

∑
j |βj |, and

let Γ(β; λ) denote the Lasso (least absolute shrinkage and selection operator) loss function

Γ(β; λ) =
n∑

i=1

L(Zi; β) + λT (β). (9)

Boosted Lasso 5

The Lasso estimate β̂ = (β̂1, ..., β̂j , ...)T is defined by

β̂λ = min
β

Γ(β; λ).

The parameter λ ≥ 0 controls the amount of regularization applied to the estimate.
Setting λ = 0 reverses the Lasso problem to minimizing the unregularized empirical loss.
On the other hand, a very large λ will completely shrink β̂ to 0 thus leading to the empty
or null model. In general, moderate values of λ will cause shrinkage of the solutions towards
0, and some coefficients may end up being exactly 0. This sparsity in Lasso solutions has
been researched extensively, e.g. Efron et al. (2004) and Donoho (2004). (Sparsity can also
result from other penalizations as in Gao and Bruce, 1997 and Fan and Li, 2001.)

Computation of the solution to the Lasso problem for a fixed λ has been studied for spe-
cial cases. Specifically, for least squares regression, it is a quadratic programming problem
with linear inequality constraints; for 1-norm SVM, it can be transformed into a linear pro-
gramming problem. But to get a model that performs well on future data, we need to select
an appropriate value for the tuning parameter λ. Practical algorithms have been proposed
to give the entire regularization path for the squared loss function (Shooting algorithm by
Fu, 1998 and LARS by Efron et al., 2004) and SVM (1-norm SVM by Zhu et al, 2003).

But how to give the entire regularization path of the Lasso problem for general convex
loss function remained open. More importantly, existing methods are only efficient when
the number of base learners is small, that is, they can not deal with large numbers of base
learners that often arise in nonparametric learning, e.g. trees, wavelets and splines. FSF
exists as a compromise since, like Boosting, it is a nonparametric learning algorithm that
works with different loss functions and large numbers of base learners but it only has implicit
local regularization and is often too greedy comparing to Lasso as can be seen from our
analysis (Section 4) and experiment (Figure 1).

Next we propose the Boosted Lasso (BLasso) algorithm which works in a computation-
ally efficient fashion as FSF. But unlike FSF, BLasso is able to approximate the Lasso path
for general convex loss functions infinitely close.

3. Boosted Lasso

We start with the description of the BLasso algorithm. A small step size constant ε > 0
and a small tolerance parameter ξ ≥ 0 are needed to run the algorithm. The step size ε
controls how well BLasso approximates the Lasso path. The tolerance ξ controls how large
a descend needs to be made for a backward step and is set to be smaller than ε to have a
good approximation. When the number of base learners is finite, the tolerance can be set
to 0 or a small number to accommodate the numerical precision of the computer.

Boosted Lasso (BLasso)

Step 1 (initialization). Given data Zi = (Yi, Xi), i = 1, ..., n, take an initial forward step

(ĵ, ŝĵ) = arg min
j,s=±ε

n∑

i=1

L(Zi; s1j),

β̂0 = ŝĵ1ĵ,

6 Peng Zhao et al.

Then calculate the initial regularization parameter

λ0 =
1
ε
(

n∑

i=1

L(Zi; 0) −
n∑

i=1

L(Zi; β̂0))

.
Set the active index set I0

A = {ĵ}. Set t = 0.
Step 2 (Backward and Forward steps). Find the “backward” step that leads to the minimal
empirical loss

ĵ = arg min
j∈It

A

n∑

i=1

L(Zi; β̂t + sj1j) where sj = −sign(β̂t
j)ε. (10)

Take the step if it leads to a decrease of moderate size ξ in the Lasso loss, otherwise force
a forward step (as (7), (8) in FSF) and relax λ if necessary. That is if Γ(β̂t + ŝĵ1ĵ; λ

t) −
Γ(β̂t, λt) < −ξ, then

β̂t+1 = β̂t + ŝĵ1ĵ,

λt+1 = λt,

It+1
A = It

A/{ĵ}, if β̂t+1

ĵ
= 0.

Otherwise,

(ĵ, ŝ) = arg min
j,s=±ε

n∑

i=1

L(Zi; β̂t + s1j), (11)

β̂t+1 = β̂t + ŝ1ĵ , (12)

λt+1 = min[λt,
1
ε
(

n∑

i=1

L(Zi; β̂t) −
n∑

i=1

L(Zi; β̂t+1))],

It+1
A = It

A ∪ {ĵ}.
Step 3 (iteration). Increase t by one and repeat Step 2 and 3. Stop when λt ≤ 0.

We will discuss forward and backward steps in depth in the next section. Immediately,
the following properties can be proved for BLasso (see Appendix for the proof).

Lemma 1.

(a) For any λ ≥ 0, if there exist j and s with |s| = ε such that Γ(s1j; λ) ≤ Γ(0;λ), we
have λ0 ≤ λ.

(b) For any t such that λt+1 = λt, we have Γ(β̂t+1; λt) ≤ Γ(β̂t; λt).
(c) For ξ = 0 and any t such that λt+1 < λt, we have Γ(β̂t; λt) < Γ(β̂t ± ε1j; λt) for every

j and ‖β̂t+1‖1 = ‖β̂t‖1 + ε.

Lemma 1 (a) guarantees that it is safe for BLasso to start with an initial λ0 which is
the largest λ that would allow an ε step away from 0 (i.e., larger λ’s correspond to β̂λ = 0).
Lemma 1 (b) says that for each value of λ, BLasso performs coordinate descent until there

Boosted Lasso 7

is no descent step. Then, by Lemma 1 (c), the value of λ is reduced and a forward step is
forced. Since the minimizers corresponding to adjacent λ’s are usually close, this procedure
moves from one solution to the next within a few steps and effectively approximates the
Lasso path. Actually, we have a convergence result for BLasso:

Theorem 1. For finite number of base learners and ξ = 0, if L(Z; β) is strictly convex and
continuously differentiable in β, then as ε → 0, the BLasso path converges to the Lasso path.

Many popular loss functions, e.g. squared loss, logistic loss and negative log-likelihood
functions of exponential families, are convex and continuously differentiable. Other func-
tions like the hinge loss (SVM) is continuous and convex but not differentiable. In fact,
BLasso does not use any gradient or higher order derivatives but only the differences of
the loss function. When the function is differentiable, because of the small fixed step size,
the differences are good approximations to the gradients, but they are simpler to compute.
When the loss function is not differentiable, BLasso still runs because it does not rely on
derivatives. It is theoretically possible that BLasso’s coordinate descent strategy gets stuck
at nonstationary points for functions like the hinge loss. However, as illustrated in our third
experiment, BLasso may still work for 1-norm SVM empirically.

Note that Theorem 1 does not cover nonparametric learning problems with an infinite
number of base learners. In fact, for problems with a large or an infinite number of base
learners, the minimization in (11) can be carried out approximately by functional gradient
descent, but a tolerance ξ > 0 needs to be chosen to avoid oscillation between forward and
backward steps caused by slow descending. We will return to this topic in Section 6.

4. The Backward Boosting Step

We now explain the motivation and working mechanic of BLasso. Observe that FSF only
uses “forward” steps, that is, it only takes steps that lead to a direct reduction of the
empirical loss. Comparing to classical model selection methods like Forward Selection and
Backward Elimination, Growing and Pruning of a classification tree, a “backward” coun-
terpart is missing. Without the backward step, FSF can be too greedy and deviate from
the Lasso path in some cases (cf. Figure 1). This backward step naturally arises in BLasso
because of our coordinate descent view of the minimization of the Lasso loss.

For a given β �= 0 and λ > 0, consider the impact of a small ε > 0 change of βj to the
Lasso loss Γ(β; λ). For an |s| = ε,

∆jΓ(Z; β) = (
n∑

i=1

L(Zi; β + s1j) −
n∑

i=1

L(Zi; β)) + λ(T (β + s1j) − T (β))

:= ∆j(
n∑

i=1

L(Zi; β)) + λ∆jT (β). (13)

Since T (β) is simply the L1 norm of β, ∆T (β) reduces to a simple form:

∆jT (β) = ‖β + s1j‖1 − ‖β‖1 = |βj + s| − |βj |
= sign+(βj , s) · ε (14)

where sign+(βj , s) = 1 if sβj > 0 or βj = 0, sign+(βj , s) = −1 if sβj < 0 and sign+(βj , s) =
0 if s = 0.

8 Peng Zhao et al.

Equation (14) shows that an ε step’s impact on the penalty is a fixed ε for any j. Only
the sign of the impact may vary. Suppose given a β, the “forward” steps for different
j have impacts on the penalty of the same sign, then ∆jT is a constant in (13) for all
j. Thus, minimizing the Lasso loss using fixed-size steps is equivalent to minimizing the
empirical loss directly. At the “early” stages of FSF, all forward steps are parting from
zero, therefore all the signs of the “forward” steps’ impact on penalty are positive. As the
algorithm proceeds into “later” stages, some of the signs may change into negative and
minimizing the empirical loss is no longer equivalent to minimizing the Lasso loss. Hence
in the beginning, FSF carries out a steepest descent algorithm that minimizes the Lasso
loss and follows Lasso’s regularization path, but as it goes into later stages, the equivalence
is broken and they part ways. In fact, except for special cases like orthogonal designed
covariates, FSF usually go into “later” stages, then the signs of impacts on penalty on
some directions can change from positive to negative. These directions then reduce the
empirical loss and penalty simultaneously therefore they should be preferred over other
directions. Moreover, there can also be occasions where a step goes “backward” to reduce
the penalty with a small sacrifice in empirical loss. In general, to minimize the Lasso loss,
one needs to go “back and forth” to trade off the penalty with empirical loss for different
regularization parameters. We call a direction that leads to reduction of the penalty a
“backward” direction and define a backward step as the following:

For a given β̂, a backward step is such that:

∆β̂ = sj1j , subject to β̂j �= 0, sign(s) = −sign(β̂j) and |s| = ε.

Making such a step will reduce the penalty by a fixed amount λ · ε, but its impact on
the empirical loss can be different, therefore as in (10) we want:

ĵ = argmin
j

n∑

i=1

L(Zi; β̂ + sj1j) subject to β̂j �= 0 and sj = −sign(β̂j)ε,

i.e. ĵ is picked such that the empirical loss after making the step is as small as possible.
While forward steps try to reduce the Lasso loss through minimizing the empirical loss,

the backward steps try to reduce the Lasso loss through minimizing the Lasso penalty.
Although rare, it is possible to have a step reduce both the empirical loss and the Lasso
penalty. It thus works both as a forward step and a backward step. We do not distinguish
such steps as they do not create any confusions.

In summary, by allowing the backward steps, we are able to work with the Lasso loss
directly and take backward steps to correct earlier forward steps that are too greedy.

5. Least Squares Problem

For the most common particular case – least squares regression, the forward and backward
steps in BLasso become very simple and more intuitive. To see this, we write out the
empirical loss function L(Zi; β) in its L2 form,

n∑

i=1

L(Zi; β) =
n∑

i=1

(Yi − Xiβ)2 =
n∑

i=1

(Yi − Ŷi)2 =
n∑

i=1

η2
i . (15)

where Ŷ = (Ŷ1, ..., Ŷn)T are the “fitted values” and η = (η1, ..., ηn)T are the “residuals”.

Boosted Lasso 9

Recall that in a penalized regression setup Xi = (Xi1, ..., Xim), every covariates Xj =
(X1j , ..., Xnj)T is normalized, i.e. ‖Xj‖2 =

∑n
i=1 X2

ij = 1 and
∑n

i=1 Xij = 0. For a given
β = (β1, ...βm)T , the impact of a step s of size |s| = ε along βj on the empirical loss function
can be written as:

∆(
n∑

i=1

L(Zi; β)) =
n∑

i=1

[(Yi − Xi(β + s1j))2 − (Yi − Xiβ)2]

=
n∑

i=1

[(ηi − sXi1j)2 − η2
i] =

n∑

i=1

(−2sηiXij + s2X2
ij)

= −2s(η · Xj) + s2. (16)

The last line of these equations delivers a strong message – in least squares regression,
given the step size, the impact on the empirical loss function is solely determined by the
inner-product (correlation) between the fitted residuals and each coordinate. Specifically, it
is proportional to the negative inner-product between the fitted residuals and the covariate
plus the step size squared. Therefore coordinate steepest descent with a fixed step size on
the empirical loss function is equivalent to finding the covariate that is best correlated with
the fitted residuals at each step, then proceed along the same direction. This is in principle
the same as FSF.

Translate this for the forward step where originally

(ĵ, ŝĵ) = arg min
j,s=±ε

n∑

i=1

L(Zi; β + s1j),

we get
ĵ = arg max

j
|η · Xj | and ŝ = sign(η · X ĵ)ε, (17)

which coincides exactly with the stagewise procedure described in Efron (2002) and is in
general the same principle as L2 Boosting, i.e. recursively refitting the regression residuals
along the most correlated direction except the difference in step size choice (Friedman 2001,
Buhlmann and Yu 2003). Also, under this simplification, a backward step becomes

ĵ = argmin
j

(−s(η · Xj)) subject to β̂j �= 0 and sj = −sign(β̂j)ε. (18)

Clearly that both forward and backward steps are based only on the correlations be-
tween fitted residuals and the covariates. It follows that BLasso in the L2 case reduces to
finding the best direction in both forward and backward directions by examining the inner-
products, and then deciding whether to go forward or backward based on the regularization
parameter. This not only simplifies the minimization procedure but also significantly re-
duces the computation complexity for large datasets since the inner-product between ηt and
Xj can be updated by

(ηt+1)′Xj = (ηt − sXĵt)′Xj = (ηt)′Xj − sX ′
ĵtXj . (19)

which takes only one operation if X ′
ĵtXj is precalculated.

Therefore, when the number of base learners is small, based on precalculated X ′X and
Y ′X , BLasso without the original data by using (19) which makes its computation com-
plexity independent from the number of observations. When the number of base learners

10 Peng Zhao et al.

is large (or infinite), this strategy because inefficient (or unsuitable). The forward step is
then done by a sub-optimization procedure e.g. fitting smoothing splines. For the back-
ward step, only inner-products between base learners with nonzero coefficients need to be
calculated once. Then the inner products between these base learners and residuals can be
updated by (19). This makes the backward steps’ computation complexity proportional to
the number of base learners that are already chosen instead of the number of all possible
base learners. Therefore BLasso works efficiently not only for cases with large sample size
but also for cases where a class of a large or an infinite number of possible base learners is
given but we only look for a sparse model.

As mentioned earlier, there are already established algorithms for solving the least square
Lasso problem e.g. Shooting algorithm (Fu 1998), and LARS (Efron et al. 2004). These
algorithms are efficient for giving the exact Lasso path when the number of base learners is
small but neither algorithm is adequate for nonparametric learning problems with a large or
an infinite number of base learners. Also, given the entire Lasso path, one solution needs to
be selected. Previous algorithms suggest using (generalized) cross validation procedures that
minimized a (generalized) cross validation loss over a grid of λ. BLasso, as these strategies
still apply, can also take advantage of early stopping as in the original boosting literature
and potentially saves computation from further unnecessary iterations. Particularly, in cases
where the Ordinary Least Square (OLS) model performs well, BLasso can be modified
to start from the OLS model, go backward and stop in a few iterations. Overall, for
least squares problem, BLasso is an algorithm with Boosting’s computational efficiency and
flexibility but also produces Lasso solutions as LARS and Shooting algorithms.

6. Boosted Lasso for Nonparametric Learning

As we discussed for the least squares problem, Boosted Lasso can be used to deal with
nonparametric learning problems with a large or an infinite number of base learners. This
is because Boosted Lasso has two types of steps: forward and backward, for both of which
a large or an infinite number of base learners does not create a problem.

The forward steps are similar to the steps in Boosting which can handle a large or
an infinite number of base learners. That is, the forward step, as in Boosting, is a sub-
optimization problem by itself and Boosting’s functional gradient descend strategy applies
and this functional gradient strategy works even with a large or an infinite number of base
learners. For example, in the case of classification with trees, one can use the classification
margin or the logistic loss function as the loss function and use a reweighting procedure to
find the appropriate tree at each step (for details see e.g. Breiman 1998 and Friedman et
al. 2000). In case of regression with the L2 loss function, the minimization as in (11) is
equivalent to refitting the residuals as we described in the last section.

The backward steps consider only those base learners already in the model and the
number of these learners is always finite. This is because for an iterative procedure like
Boosted Lasso, we usually stop early to avoid overfitting and to get a sparse model. This
results in a finite number of base learners altogether. And even if the algorithm is kept
running, it usually reaches a close-to-perfect fit without too many iterations (i.e. the “strong
learnability” in Schapire 1990). Therefore, the backward step’s computation complexity is
limited because it only involves base learners that are already included from previous steps.

There is, however, a difference in the BLasso algorithm between the case with a small
number of base learners and the one with a large or an infinite number of base learners. For

Boosted Lasso 11

the finite case, since BLasso requires a backward step to be strictly descending and relax
λ whenever no descending step is available, therefore BLasso never reach the same solution
more than once and the tolerance constant ξ can be set to 0 or a very small number
to accommodate the program’s numerical accuracy. In the nonparametric learning case,
oscillation could occur when BLasso keeps going back and forth in different directions but
only improving the penalized loss function by a diminishing amount, therefore a positive
tolerance ξ is mandatory. Since a step’s impact on the penalized loss function is on the
order of ε, we suggest using ξ = c · ε where c ∈ (0, 1) is a small constant.

7. Generalized Boosted Lasso

As stated earlier, BLasso not only works for general convex loss functions, but also extends to
convex penalties other than the L1 penalty. For the Lasso problem, BLasso does a fixed step
size coordinate descent to minimize the penalized loss. Since the penalty has the special L1

norm and (14) holds, a step’s impact on the penalty has a fixed size ε with either a positive or
a negative sign, and the coordinate descent takes form of “backward” and “forward” steps.
This reduces the minimization of the penalized loss function to unregularized minimizations
of the loss function as in (11) and (10). For general convex penalties, since a step on different
coordinates does not necessarily have the same impact on the penalty, one is forced to work
with the penalized function directly. Assume T (β): Rm → R is a convex penalty function.
We now describe the Generalized Boosted Lasso algorithm:

Generalized Boosted Lasso

Step 1 (initialization). Given data Zi = (Yi, Xi), i = 1, ..., n and a fixed small step size
ε > 0 and a small tolerance parameter ξ > 0, take an initial forward step

(ĵ, ŝĵ) = arg min
j,s=±ε

n∑

i=1

L(Zi; s1j), β̂0 = ŝĵ1ĵ .

Then calculate the corresponding regularization parameter

λ0 =
∑n

i=1 L(Zi; 0) − ∑n
i=1 L(Zi; β̂0)

T (β̂0) − T (0)
.

Set t = 0.
Step 2 (steepest descent on Lasso loss). Find the steepest coordinate descent direction on
the penalized loss

(ĵ, ŝĵ) = arg min
j,s=±ε

Γ(β̂t + s1j; λt).

Update β̂ if it reduces Lasso loss; otherwise force β̂ to minimize L and recalculate the
regularization parameter. That is if Γ(β̂t + ŝĵ1ĵ ; λ

t) − Γ(β̂t, λt) < −ξ, then

β̂t+1 = β̂t + ŝĵ1ĵ, λt+1 = λt.

Otherwise,

(ĵ, ŝĵ) = arg min
j,|s|=ε

n∑

i=1

L(Zi; β̂t + s1j),

12 Peng Zhao et al.

β̂t+1 = β̂t + ŝĵ1ĵ ,

λt+1 = min[λt,

∑n
i=1 L(Zi; β̂t) − ∑n

i=1 L(Zi; β̂t+1)

T (β̂t+1) − T (β̂t)
].

Step 3 (iteration). Increase t by one and repeat Step 2 and 3. Stop when λt ≤ 0.

In the Generalized Boosted Lasso algorithm, explicit “forward” or “backward” steps are
no longer seen. However, the mechanic remains the same – minimize the penalized loss
function for each λ, relax the regularization by reducing λ through a “forward” step when
the minimum of the loss function for the current λ is reached.

Another method that works in a similar fashion is the Barrier Method proposed by
Fiacco and McCormick (1968) (cf. Boyd and Vandenberghe, 2004). It is an advanced
optimization method for constrained convex minimization problems which solves a sequence
of unconstrained minimization problems that approach the constrained problem. We note
that BLasso also solves a sequence of optimization problems indexed by λ. Both methods
use the last solution found as the starting point for the next unconstrained minimization
problem. However, there exists a fundamental difference: the Barrier Method targets to get
to the end of the path (λ = 0) so it jumps quickly from solution to solution according to a
geometric schedule. In comparison, BLasso is designed to produce a well sampled solution
path. It therefore places solution points evenly on the path (more discussions will be offered
when we compare BLasso with the algorithm in Rosset (2004) in the discussion section).
This subtle connection between BLasso and the extensively studied Barrier Method provides
opportunities to explore further convergence properties of BLasso and to study the interplay
between optimization and statistical estimation theories.

8. Experiments

In this section, three experiments are carried out to implement BLasso. The first experiment
runs BLasso on the diabetes dataset (cf. Efron et al. 2004) with an added artificial covariate
variable under the classical Lasso setting, i.e. L2 regression with an L1 penalty. This added
covariate is strongly correlated with a couple of the original covariates. In this case, BLasso
is seen to produce a path almost exactly the same as the Lasso path, while FSF’s path parts
drastically from Lasso’s due to the added strongly correlated covariate.

In the second experiment, we use the diabetes dataset for L2 regression without the
added covariate but with several different penalties, therefore Generalized BLasso is used.
The penalties are bridge penalties (cf. Fu 1998) with different bridge parameters γ = 1,
γ = 1.1, γ = 2, γ = 4 and γ = ∞. Generalized BLasso produced the solution paths
successfully for all cases.

The last experiment is on classification where we use simulated data to illustrate BLasso’s
solving regularized classification problem under the 1-norm SVM setting. Here, since the
loss function is not continuously differentiable, it is theoretically possible that BLasso does
not converge to the true regularization path. However, as we illustrate, BLasso runs without
a problem and produces reasonable solutions.

8.1. L2 Regression with L1 Penalty (Classical Lasso)
The dataset used in this experiment is from a Diabetes study where 442 diabetes patients
were measured on 10 baseline variables. A prediction model was desired for the response

Boosted Lasso 13

variable, a quantitative measure of disease progression one year after baseline. One addi-
tional variable, X11 = −X7 +X8 +5X9 + e where e is i.i.d. Gaussian noise (mean zero and
Var(e) = 1/442), is added to make the difference between FSF and Lasso solutions more
visible. This added covariate is strongly correlated with X9, with correlations as follows (in
the order of X1, X2, ..., X10) :

(0.25 , 0.24 , 0.47 , 0.39 , 0.48 , 0.38 , −0.58 , 0.76 , 0.94 , 0.47).

The classical Lasso – L2 regression with L1 penalty is used for this purpose. Let
X1, X2, ..., Xm be n−vectors representing the covariates and Y the vector of responses
for the n cases, m = 11 and n = 442 in this study. Location and scale transformations
are made so that all covariates are standardized to have mean 0 and unit length, and the
response has mean zero.

The penalized loss function has the form:

Γ(β; λ) =
n∑

i=1

(Yi − Xiβ)2 + λ‖β‖1 (20)

Lasso BLasso FSF

0 1000 2000 3000

−500

0

500

0 1000 2000 3000

−500

0

500

0 1000 2000 3000

−500

0

500

t =
∑ |β̂j | → t =

∑ |β̂j | → t =
∑ |β̂j | →

Figure 1. Estimates of regression coefficients β̂j , j=1,2,...10,11 for the diabetes data. Left
Panel: Lasso solutions (produced using simplex search method on the penalized empirical
loss function for each λ) as a function of t = ‖β‖1. Middle Panel: BLasso solutions, which
can be seen indistinguishable to the Lasso solutions. Right Panel: FSF solutions, which are
different from Lasso and BLasso.

The middle panel of Figure 1 shows the coefficient plot for BLasso applied to the modified
diabetes data. Left (Lasso) and Middle (Middle) panels are indistinguishable from each
other. Both FSF and BLasso pick up the added artificial and strongly correlated X11 (the
solid line) in the earlier stages, but due to the greedy nature of FSF, it is not able to remove
X11 in the later stages thus every parameter estimate is affected leading to significantly
different solutions from Lasso.

The BLasso solutions were built up in 8700 steps (making the step size ε = 0.5 small so
that the coefficient paths are smooth), 840 of which were backward steps. In comparison,
FSF took 7300 pure forward steps. BLasso’s backward steps mainly concentrate around the
steps where FSF and BLasso tend to differ.

14 Peng Zhao et al.

8.2. L2 Regression with Lγ Penalties (the Bridge Regression)
To demonstrate the Generalized BLasso algorithm or different penalties. We use the Bridge
Regression setting with the diabetes dataset (without the added covariate in the first exper-
iment). The Bridge Regression method was first proposed by Frank and Friedman (1993)
and later more carefully discussed and implemented by Fu (1998). It is a generalization
of the ridge regression (L2 penalty) and Lasso (L1 penalty). It considers a linear (L2)
regression problem with Lγ penalty for γ ≥ 1 (to maintain the convexity of the penalty
function).

The penalized loss function has the form:

Γ(β; λ) =
n∑

i=1

(Yi − Xiβ)2 + λ‖β‖γ (21)

where γ is the bridge parameter. The data used in this experiment are centered and rescaled
as in the first experiment.

γ = 1 γ = 1.1 γ = 2 γ = 4 γ = ∞

600 1800 3000 600 1800 3000 600 1800 3000 600 1800 3000 100 400 700

−1 0 1

−1

0

1

−1 0 1

−1

0

1

−1 0 1

−1

0

1

−1 0 1

−1

0

1

−1 0 1

−1

0

1

Figure 2. Upper Panel: Solution paths produced by BLasso for different bridge parameters.
, from left to right: Lasso (γ = 1), near-Lasso (γ = 1.1), Ridge (γ = 2), over-Ridge (γ = 4),
max (γ = ∞). The Y -axis is the parameter estimate and has the range [−800, 800]. The X-
axis for each of the left 4 plots is

∑
i |βi|, the one for the 5th plot is max(|βi|) because

∑
i |βi|

is unsuitable. Lower Panel: The corresponding penalty equal contours for βγ
1 + βγ

2 = 1.
Generalized BLasso successfully produced the paths for all 5 cases which are verified by

pointwise minimization using simplex method (γ = 1, γ = 1.1, γ = 4 and γ = max) or
close form solutions (γ = 2). It is interesting to notice the phase transition from the near-
Lasso to the Lasso as the solution paths are similar but only Lasso has sparsity. Also, as γ
grows larger, estimates for different βj tend to have more similar sizes and in the extreme
γ = ∞ there is a “branching” phenomenon – the estimates stay together in the beginning
and branch out into different directions as the path progresses. Since no differentiation

Boosted Lasso 15

is carried out or assumed, Generalized BLasso produced all of these significantly different
solution paths by simply plugging in different penalty functions in the algorithm.

8.3. Classification with 1-norm SVM (Hinge Loss)
To demonstrate the Generalized BLasso algorithm for a nondifferentiable loss function, we
now look at binary classification. As in Zhu et al. (2003), we generate 50 training data
points in each of two classes. The first class has two standard normal independent inputs X1

and X2 and class label Y = −1. The second class also has two standard normal independent
inputs, but conditioned on 4.5 ≤ (X1)2 + (X2)2 ≤ 8 and has class label Y = 1. We wish
to find a classification rule from the training data. so that when given a new input, we can
assign a class Y from {1,−1} to it.

1-norm SVM (Zhu et al. 2003) is used to estimate β:

(β̂0, β) = argmin
β0,β

n∑

i=1

(1 − Yi(β0 +
m∑

j=1

βjhj(Xi)))+ + λ

5∑

j=1

|βj | (22)

where hi ∈ D are basis functions and λ is the regularization parameter. The dictionary
of basis functions is D = {√2X1,

√
2X2,

√
2X1X2, (X1)2, (X2)2}. Notice that β0 is left

unregularized so the penalty function is not the L1 penalty.
The fitted model is

f̂(x) = β̂0 +
m∑

j=1

β̂jhj(x),

and the classification rule is given by sign(f̂(x)).

Regularization Path Data

0 0.5 1 1.5
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

t =
∑5

j=1 |β̂j | →

Figure 3. Estimates of 1-norm SVM coefficients β̂j , j=1,2,...,5, for the simulated two-class
classification data. Left Panel BLasso solutions as a function of t =

∑5
j=1 |β̂j |. Right Panel

Scatter plot of the data points with labels: ’+’ for y = −1; ’o’ for y = 1.

16 Peng Zhao et al.

Since the loss function is not differentiable and the penalty function is not the original
Lasso penalty, we do not have a theoretical guarantee that BLasso works. Nonetheless
the solution path produced by Generalized BLasso has the same sparsity and piecewise
linearality as the 1-norm SVM solutions shown in Zhu et al. (2003). It takes Generalized
BLasso 490 iterations to generate the solutions. The covariates enter the regression equation
sequentially as t increase, in the following order: the two quadratic terms first, followed by
the interaction term then the two linear terms. As 1-norm SVM in Zhu et al. (2003), BLasso
correctly picked up the quadratic terms early. The interaction term and linear terms that
are not in the true model comes up much later. In other words, BLasso results are in good
agreement with Zhu et al.’s 1-norm SVM results and we regard this as a confirmation for
BLasso’s effectiveness in this nondifferentiable example.

9. Discussion and Concluding Remarks

As seen from the experiments, BLasso is effective for solving the Lasso problem and general
convex penalized loss minimization problems. One practical issue left undiscussed is the
choice of the step size ε. In general, BLasso takes O(1/ε) steps to produce the whole path.
Depending on the actual loss function, base learners and minimization method used in
each step, the actual computation complexity varies. Although choosing a smaller step size
gives smoother solution path and more accurate estimates, we observe that the the actual
coefficient estimates are pretty accurate even for relatively large step sizes.

0500100015002000

0

200

400

λ

Figure 4. Estimates of regression coefficients β̂3 for the diabetes data. Solutions are
plotted as functions of λ. Dotted Line: Estimates using step size ε = 0.05. Solid Line:
Estimates using step size ε = 10. Dash-dot Line: Estimates using step size ε = 50.

For the diabetes data, using a small step size ε = 0.05, the solution path can not be
distinguished from the exact regularization path. However, even when the step size is as
large as ε = 10 and ε = 50, the solutions are still good approximations.

BLasso has only one step size parameter. This parameter controls both how close
BLasso approximates the minimization coefficients for each λ and how close two adjacent
λ on the regularization path are placed. As can be seen from Figure 4, a smaller step size
leads to a closer approximation to the solutions and also finer grids for λ. We argue that,

Boosted Lasso 17

if λ is sampled on a coarse grid we should not spend computational power on finding a
much more accurate approximation of the coefficients for each λ. Instead, the available
computational power spent on these two coupled tasks should be balanced. BLasso’s 1-
parameter setup automatically balances these two aspects of the approximation which is
graphically expressed by the staircase shape of the solution paths.

Another algorithm similar to Generalized BLasso is developed independently by Rosset
(2004). There, starting from λ = 0, a solution is generated by taking a small Newton-
Raphson step for each λ, then λ is increased by a fixed amount. The algorithm assumes
twice-differentiability of both loss function and penalty function and involves calculation of
the Hessian matrix. It works in a very similar fashion as the Barrier Method with a linear
update schedule for λ (Barrier Method uses a geometric schedule). The Barrier Method
usually uses a second order optimization method for each λ as well. In comparison, BLasso
uses only the differences of the loss function and involves only basic operations. BLasso’s
step size is defined in the original parameter space which makes the solutions evenly spread
in β’s space rather than in λ. In general, since λ is approximately the reciprocal of size
of the penalty, as fitted model grows larger and λ becomes smaller, changing λ by a fixed
amount makes the algorithm in Rosset (2004) move too fast in the β space. On the other
hand, when the model is close to empty and the penalty function is very small, λ is very
large, but the algorithm still uses same small steps thus computation is spent to generate
solutions that are too close from each other.

One of our current research topics is to apply BLasso in an online or time series setting.
Since BLasso has both forward and backward steps, we believe that an adaptive online
learning algorithm can be devised based on BLasso so that it goes back and forth to track
the best regularization parameter and the corresponding model.

We end with a summary of our main contributions:

(a) By combining both forward and backward steps, a Boosted Lasso (BLasso) algorithm
is constructed to minimize an L1 penalized convex loss function. While it maintains
the simplicity and flexibility of Boosting (or Forward Stagewise Fitting) algorithms,
BLasso efficiently produces the Lasso solutions for general loss functions and large
classes of base learners. This can be proven rigorously under the assumption that the
loss function is convex and continuously differentiable.

(b) The backward steps introduced in this paper are critical for producing the Lasso path.
Without them, the FSF algorithm can be too greedy and in general does not produce
Lasso solutions, especially when the base learners are strongly correlated as in cases
where the number of base learners is larger than the number of observations.

(c) When the loss function is squared loss, BLasso takes a simpler and more intuitive
form and depends only on the inner products of variables. For problems with large
number of observations and fewer base learners, after initialization, BLasso does not
depend on the number of observations. For nonparametric learning problems where
previous methods do not cover due to a large or an infinite number of base learners,
BLasso remains computationally efficient since the forward steps are boosting steps
and the backward steps deal only with base learners that have already been included
in the model.

(d) We generalize BLasso to deal with other convex penalties (generalized BLasso) and
show a connection with the Barrier Method for constrained convex optimization.

18 Peng Zhao et al.

A. Appendix: Proofs

First, we offer a proof for Lemma 1.

Proof. (Lemma 1)

(a) Suppose ∃λ, j, |s| = ε s.t. Γ(ε1j; λ) ≤ Γ(0;λ). We have
n∑

i=1

L(Zi; 0) −
n∑

i=1

L(Zi; s1j) ≥ λT (s1j) − λT (0),

therefore

λ ≤ 1
ε
{

n∑

i=1

L(Zi; 0) −
n∑

i=1

L(Zi; s1j)}

≤ 1
ε
{

n∑

i=1

L(Zi; 0) − min
j,|s|=ε

n∑

i=1

L(Zi; s1j)}

=
1
ε
{

n∑

i=1

L(Zi; 0) −
n∑

i=1

L(Zi; β̂0)}

= λ0.

(b) Since a backward step is only taken when Γ(β̂t+1; λt) < Γ(β̂t; λt), so we only need to
consider forward steps. When a forward step is forced, if Γ(β̂t+1; λt) > Γ(β̂t; λt), then

n∑

i=1

L(Zi; β̂t) −
n∑

i=1

L(Zi; β̂t+1) < λtT (β̂t+1) − λtT (β̂t),

therefore

λt+1 =
1
ε
{

n∑

i=1

L(Zi; β̂t) −
n∑

i=1

L(Zi; β̂t+1)} < λt

which contradicts the assumption.
(c) Since λt+1 < λt and λ can not be relaxed by a backward step, we immediately have

‖β̂t+1‖1 = ‖β̂t‖1 + ε. Then from

λt+1 =
1
ε
{

n∑

i=1

L(Zi; β̂t) −
n∑

i=1

L(Zi; β̂t+1)}

we get
Γ(β̂t; λt+1) = Γ(β̂t+1; λt+1).

Plus both sides by λt − λt+1 times the penalty term, and recall T (β̂t+1) = ‖β̂t+1‖1 >

|β̂t‖1 = T (β̂t), we get

Γ(β̂t; λt) < Γ(β̂t+1; λt)

= min
j,|s|=ε

Γ(β̂t + s1j; λt)

≤ Γ(β̂t ± ε1j; λt)

for ∀j. This completes the proof.

Boosted Lasso 19

Theorem 1 claims “the BLasso path converges to the Lasso path”, by which we mean:

(a) As ε → 0, for ∀t s.t. λt+1 < λt, Γ(β̂t; λt) − minβ Γ(β; λt) = o(1).
(b) For each ε > 0, it takes finite steps to run BLasso.

Proof. (Theorem 1)

(a) Since L(Z; β) is strictly convex in β, so Γ(β; λ) is strictly convex in β for ∀λ. So
Γ(β; λ) has unique minimum β∗(λ). For j, that β∗

j (λ) �= 0, Γ is differentiable in that
direction and dΓ = 0, for the j that β∗

j (λ) = 0, the right and left partial derivative
of Γ w.r.t. βj are both bigger than or equal to 0 and at least one of them is strictly
bigger than 0. Now, recall Lemma 1 says BLasso does steepest coordinate descent
with fixed step size ε. We want to show it does not get stuck near a nonstationary
point as ε → 0.
Consider at β̂t, we look for the steepest descent on the surface of a polytope defined
by β = β̂t + ∆β where ‖∆β‖1 = ε, i.e.

min
∆β

∆Γ(β̂t + ∆β; λ) subject to ‖∆β‖1 = ε. (23)

Here
∆Γ = ∆L + λ∆T.

Since L is continuously differentiable w.r.t. β, we have

∆L =
∑

j

∂L

∂βj
∆βj + o(ε). (24)

And since T (β) =
∑

j |βj |, we have

∆T =
∑

j

sign+(β̂t, ∆βj)‖∆βj‖. (25)

Therefore as ε → 0, (23) becomes a linear programming problem. This indicates,
near a nonstationary point, if there is a descending point on the polytope then there
is a descending direction on the vertices. More precisely, if ∃∆β such that ∆Γ(β̂t +
∆β; λ) < 0 and is not o(ε), then there exists a descending direction j. This contradicts
with Lemma 1(c).
Therefore, for any j, either ∆Γ(β̂t+∆βj ; λ) = o(ε) or it is not o(ε) but less than zero in
both positive and negative directions where the later corresponds to zero entries in β̂t.
Thus, by the continuous differentiability assumption, β̂t is in the o(1) neighborhood
of β∗(λt) which implies Γ(β̂t; λt) − Γ(β∗(λt); λt) = o(1). This concludes the proof.

(b) First, suppose we have λt+1 < λt, λt′+1 < λt′ and t < t′. Immediately, we have
λt > λt′ , then

Γ(βt′ ; λt′) < Γ(βt; λt′) < Γ(βt; λt) < Γ(βt′ ; λt).

Therefore
Γ(βt′ ; λt) − Γ(βt′ ; λt′) > Γ(βt; λt) − Γ(βt; λt′),

from which we get
T (βt′) > T (βt).

20 Peng Zhao et al.

So the BLasso solution before each time λ gets relaxed strictly increases in L1 norm.
Then since the L1 norm can only change on an ε-grid, so λ can only be relaxed finite
times till BLasso reaches the unregularized solution.
Now for each value of λ, since BLasso is always strictly descending, the BLasso solu-
tions never repeat. By the same ε-grid argument, BLasso can only take finite steps
before λ has to be relaxed.
Combining the two arguments, we conclude that for each ε > 0 it can only take finite
steps to run BLasso.

Acknowledgments. B. Yu would like to gratefully acknowledge the partial supports from
NSF grants FD01-12731 and CCR-0106656 and ARO grant DAAD19-01-1-0643, and the
Miller Research Professorship in Spring 2004 from the Miller Institute at University of
California at Berkeley. Both authors thank Dr. Chris Holmes and Mr. Guilherme V.
Rocha for their very helpful comments and discussions on the paper.

References

[1] Boyd, S. and Vandenberghe L. (2004). Convex Optimization, Cambridge University
Press.

[2] Breiman, L. (1998). “Arcing Classifiers”, Ann. Statist. 26, 801-824.

[3] Buhlmann, P. and Yu, B. (2001). “Boosting with the L2 Loss: Regression and Classi-
fication”, J. Am. Statist. Ass. 98, 324-340.

[4] Donoho, D. (2004). “For Most Large Underdetermined Systems of Linear Equations,
the minimal l1-norm near-solution approximates the sparsest near-solution”, Technical
reports, Statistics Department, Stanford University.

[5] Efron, B., Hastie,T., Johnstone, I. and Tibshirani, R. (2004). “Least Angle Regression”,
Ann. Statist. 32, 407-499.

[6] Fan, J. and Li, R.Z. (2001). “Variable Selection via Nonconcave Penalized Likelihood
and its Oracle Properties”, J. Am. Statist. Ass. 96, 1348-1360.

[7] Fiacco, A. V. and McCormick, G. P. (1968). “Nonlinear Programming. Sequential
Unconstrained Minimization Techniques”, Society for Industrial and Applied Mathe-
matics, 1990. First published in 1968 by Research Analysis Corporation.

[8] Frank, I.E. and Friedman, J.H. (1993), “A Statistical View of Some Chemometrics
Regression Tools”, Technometrics, 35, 109-148.

[9] Freund, Y. (1995). “Boosting a weak learning algorithm by majority”, Information and
Computation 121, 256-285.

[10] Freund, Y. and Schapire, R.E. (1996). “Experiments with a new boosting algorithm”,
Machine Learning: Proc. Thirteenth International Conference, 148-156. Morgan Kauff-
man, San Francisco.

[11] Friedman, J.H., Hastie, T. and Tibshirani, R. (2000). “Additive Logistic Regression: a
Statistical View of Boosting”, Ann. Statist. 28, 337-407.

Boosted Lasso 21

[12] Friedman, J.H. (2001). “Greedy Function Approximation: a Gradient Boosting Ma-
chine”, Ann. Statist. 29, 1189-1232.

[13] Fu, W. J. (1998). “Penalized regressions: the Bridge versus the Lasso” J. Comput.
Graph. Statist. 7, 397-416.

[14] Fu, W. and Knight, K. (2000). “Asymptotics for lasso-type estimators” Ann. Statist.
28, 1356-1378.

[15] Gao, H. Y. and Bruce, A. G. (1997) “WaveShrink With Firm Shrinkage,” Statistica
Sinica, 7, 855-874.

[16] Hansen, M. and Yu, B. (2001). “Model Selection and the Principle of Minimum De-
scription Length”, J. Am. Statist. Ass. 96, 746-774.

[17] Hastie, T., Tibshirani, R. and Friedman, J.H. (2001). The Elements of Statistical Learn-
ing: Data Mining, Inference and Prediction, Springer Verlag, New York.

[18] Mason, L., Baxter, J., Bartlett, P. and Frean, M. (1999). “Functional Gradient Tech-
niques for Combining Hypotheses”, In Advance in Large Margin Classifiers. MIT Press.

[19] Rosset, S. (2004). “Tracking Curved Regularized Optimization Solution Paths”, NIPS
2004.

[20] Schapire, R.E. (1990). “The Strength of Weak Learnability”. Machine Learning 5(2),
1997-227.

[21] Tibshirani, R. (1996). “Regression shrinkage and selection via the lasso”, J. R. Statist.
Soc. B, 58(1) 267-288.

[22] Zhang, T. and Yu, B.(2003). “Boosting with early stopping: convergence and consis-
tency”, Ann. Statist., to appear.

[23] Zhu, J. Rosset, S., Hastie, T. and Tibshirani, R.(2003) “1-norm Support Vector Ma-
chines”, Advances in Neural Information Processing Systems 16. MIT Press.

